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ABSTRACT
Diffusions, such as the heat kernel diffusion and the PageRank vec-

tor, and their relatives are widely used graph mining primitives that

have been successful in a variety of contexts including community

detection and semi-supervised learning. The majority of existing

methods and methodology involves linear diffusions, which then

yield simple algorithms involving repeated matrix-vector opera-

tions. Recent work, however, has shown that sophisticated and

complicated techniques based on network embeddings and neural

networks can give empirical results superior to those based on lin-

ear diffusions. In this paper, we illustrate a class of nonlinear graph

diffusions that are competitive with state of the art embedding tech-

niques and outperform classic diffusions. Our new methods enjoy

much of the simplicity underlying classic diffusion methods as well.

Formally, they are based on nonlinear dynamical systems that can

be realized with an implementation akin to applying a nonlinear

function after each matrix-vector product in a classic diffusion. This

framework also enables us to easily integrate results from multiple

data representations in a principled fashion. Furthermore, we have

some theoretical relationships that suggest choices of the nonlinear

term. We demonstrate the benefits of these techniques on a variety

of synthetic and real-world data.

CCS CONCEPTS
• Mathematics of computing → Graph algorithms; • Com-
puting methodologies→ Cluster analysis; • Theory of compu-
tation → Semi-supervised learning.
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1 INTRODUCTION
Diffusion methods for graph mining work by modeling a process

where we conceptually inject a dye at a particular node or set of
nodes in the graph and observe how the dye diffused over the

edges of the graph.
1
How the dye diffuses reveals latent structure

in the graph. For instance, if the dye stays nearby the source, this

indicates that there is a community nearby the source. If the dye
starts at nodes with a particular label, then under homophily (where

neighbors share similar properties), the dye will concentrate at

nodes likely to share the same label. In this way, the method can be

used for semi-supervised learning. Because this conceptual view

of diffusions is general, a graph diffusion can be realized in a large

number of ways including smooth functions on graphs [57], random

walks [38], PageRank equations [37], and linear algebra relaxations

of combinatorial graph theory [15, 35]. Consequently, diffusion

methods have beenwidely applied to a large variety of graphmining

tasks [13, 18, 20, 24, 32, 38]. In the majority of these results, diffusion

methods gave a performance that was comparable to the state of the

art, with many possible ways to adjust the computational primitive

to improve the results and to scale up to massive problems.

More recently, however, a new class of techniques emerged that

raised the state of the art performance on semi-supervised learn-

ing problems. These are based on node embeddings along with

subsequent machine learning algorithms [22, 39] or from more

complicated graph-based variations on neural networks [26, 56].

These methods are impressive because they have established new

benchmarks for performance on learning with graph-based data. A

downside to these methods, however, is that they can be hard to

reason about and can make it difficult to understand what may be

causing poor performance on new problems.

Diffusions, on the other hand, are highly intuitive, simple proce-

dures modeled on the dye description in the introduction. The vast

majority of existing work on diffusions in graphs considers linear

diffusions, those where the dynamics can be fully captured by a

single matrix operator, such as a random-walk operator or a Lapla-

cian matrix, or a regularized or perturbed version of either [19]. In

this paper, we consider nonlinear diffusions, which arise in more

1
We use the term dye here as an intuitive concept only and mimic the ideas of dyes

and diffusions in medical diagnostics and physics.
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Figure 1: Comparison between linear diffusion based on the linear heat kernel diffusion (left) and our nonlinear diffusion
(right) on Fashion MNIST dataset where we seeded the diffusions on a few pictures of pullover sweaters and dresses. This
gives a coordinate for each image in the graph based on its diffusion value and these diffusion values reflect how much it
looks like a pullover or dress. We draw the same 20 examples for linear diffusion and nonlinear diffusion. The linear diffusion
concentrates the results nearby the seeds (most images are on top of each other) where the nonlinear diffusion captures our
intuitive notion that there is a diversity of images that look like dresses or pullovers. For example, in the right figure, with
respect to the y-axis, the sorting of the diffusion values reflect the semantic similarity between the clothes. Marker (a) points
to dresses, marker (b) points to trousers (long as dress), marker (c) points to tops and finally, marker (d) points to shoes.

complicated physics and ecology settings. For instance, the porous

media equation [23, 29] describes diffusion through a physical sub-

stance that can capture and store the diffusing substance (such as

an isentropic gas), slowing the diffusion in a nonlinear fashion.

The fast diffusion equation [48] describes diffusion in plasma’s [6],

and also the diffusion of materials in silicon when the medium is

clustered [25]. These diffusions are fairly well understood from an

abstract mathematical perspective (e.g. see [7, 48, 49]). With only

a few exceptions, however, these ideas have not been applied to

graph mining tasks. (See related work for more discussion of what

has been done with respect to graphs and networks.) A related

type of nonlinearity, which involves using a nonlinear transmis-

sion process which diffuses dye according to some nonlinear rule,

is captured with a nonlinear Laplacian operator such as the p-
Laplacian [1, 8, 9]. These have been studied as ways to generalize

spectral clustering (see Section 4 for more about the differences).

Additionally, it was shown in [36] that using the traditional Lapla-

cian in semi-supervised learning results in labeling function that is

spiky at the labeled points and flat everywhere else. Bridle et al. [8]

solve this problem using the p-Laplacian in an energy minimization

problem and we inherit this advantage when we use thep-Laplacian
in the diffusion process.

In this paper, we show that by using values from these nonlin-

ear diffusions, we are able to match state of the art performance

benchmarks in semi-supervised learning. This helps to retain the

intuitive reasoning behind the methods. As an example of how

nonlinear diffusions help to solve problems, see Figure 1, where

we show the solution of the standard heat kernel diffusion and

nonlinear diffusion for a semi-supervised learning problem on the

Fashion MNIST dataset [54]. In this case, we form a graph based

on the images themselves (see more details in Section 6.4). Then

we diffuse from a few images of a pull-over sweater and a dress

with the heat kernel diffusion and our nonlinear diffusion. We show

each image (node in the graph) in the after the diffusion has run

for some time for the kernel diffusion compared with the nonlinear

fast diffusion. As the figure shows, using the nonlinear diffusion

causes the points to spread out far more than what is shown in the

heat kernel. This illustrates how these advanced diffusions can give

a much wider spread of values compared with standard diffusions

and enable better classification. Avoiding these spiked solutions

was also a motivation of past work on nonlinear diffusions [8].

More generally, introducing simple nonlinearities often improves

the performance of other machine learning tasks. For example,

nonlinear dimensionality reduction techniques [41, 46] outperforms

linear techniques by assuming that the data lies in a nonlinear

manifold. Nonlinear activation functions enhance the results of

neural networks [16], and simple nonlinear transformations of the

results of spectral clustering improve results as well [51]. Hence,

our work shows yet another way that simple nonlinearities can

improve the performance of graph mining tasks.

Finally, one of the great advantages to diffusion methods is that

they offer theoretical guarantees of performance through Cheeger

inequalities [11–13, 35, 55]. These relate the output from the diffu-

sion to nearby bottlenecks in the graph, formalized as low conduc-

tance sets. (See [56] for examples on how general this perspective

can be to capture a large number of notions of conductance.) In
this paper, we have results that suggest using a nonlinear diffusion

using the power function with power value close to 0 should give
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the best performance for low-conductance set detection through

new analysis of the sweepcut procedure (Theorem 5.8).

Our experimental results (Section 6) show that nonlinear diffu-

sion outperforms heat diffusion in community detection by up to

35% in F1-measure and it outperforms related work in graph-based

semi-supervised learning in most datasets. In the latter case, we

show how our diffusion framework can be adapted to work on

multiple datasets (Section 3.2).

Summary of contributions and outline of the paper.
• We introduce two methods for nonlinear diffusion, one us-

ing nonlinear functions and another one using nonlinear

Laplacian operators (Section 2).

• We place these diffusions in a framework where we can

integrate multiple data representations and to self-train itself

(Section 3).

• We show that nonlinear diffusionwith power function should

give smaller conductance sets with p approaches 0. (Sec-

tion 5).

• We experimentally compare nonlinear diffusion methods

to related work in community detection and graph-based

semi-supervised learning (Section 6).

2 EVALUATING NONLINEAR DIFFUSIONS
2.1 Notation and Background
We use the following notation throughout the rest of the paper.

Scalars are denoted by small letters (e.g.,m,n), sets are shown in

capital letters (e.g., X , Y ), vectors are denoted by small bold letters

(e.g., f , g), and matrices are denoted by capital bold letters (e.g.,

A,L).
Let G = (V ,E) be an undirected graph, where n = |V | is the

number of nodes in the graph. Let A be the associated adjacency

matrix of the graph G and D be the diagonal matrix of degrees,

where Dii = d(i ), is the degree of the vertex i . (In the case of a

weighted graph, then the weighted degrees are the sum of the edge

weights.) Additionally, eS is the vector of all ones for entries i ∈ S
and zero otherwise.

Conductance. Conductance is one of the popular quality mea-

sures that quantifies how good is the set S as a partition of the

graph G [43]. Given a subset S of the vertices V , we define the

volume of set S as vol(S ) =
∑
v ∈S d(v ) and the cut of set S as

cut(S ) = {{u,v} ∈ E : u ∈ S and v ∈ S̄ }. Furthermore, the conduc-

tance of the set S is defined as:

ϕ (S ) =
|cut(S ) |

minvol(S )
,

where minvol(S ) = min(vol(S ), vol(V − S )). For weighted graphs,

the volume uses the weighted degrees and the |cut(S ) | is the sum
of edge weights cut.

The heat kernel diffusion The heat kernel diffusion [13] from

a seed set S results in a solution to the dynamical system:

∂u
∂t
= −Lu u(0) =

eS
|S |
,

where L = I −AD−1
is the randomwalk Laplacian with eigenvalues

λ ∈ [0, 2].
2

2
Note that the Fiedler vector used in spectral clustering is f = Dx2 , where x2 is the

eigenvector associated with the second smallest eigenvalue of L.

We can state a closed-form solution via the matrix exponential:

u(t ) = exp(−tL)eS /|S |,

which has been shown to have a number of nice properties [13, 27].

In the remainder of this section, we will describe two methods to

encode nonlinearity in the heat kernel diffusion. The first method

is by first applying a nonlinear function д to grow or decay the

values at each node and then transmitting the heat according to the

heat diffusion differential equation. The second method is by using

a nonlinear Laplacian operator that grows or decays the amount

transferred on each edge.

2.2 Nonlinear Diffusion with Growth or Decay
The following dynamical system describes a general notion of non-

linear diffusion (e.g. [49]) when applied to a graph or network:

∂u
∂t
= −Lд(u) u(0) =

eS
|S |
.

Here д is the nonlinear function, S is the set of seed nodes, and

u(t ) ∈ Rn is the diffusion value at each node at time t . One represen-
tative choice of д is the power function д(u) = up (element-wise).

Using the power function is motivated by the porous media equa-

tion (p > 1) [47] and the fast diffusion equation (p < 1) [7] (see

discussion of these in the introduction). Setting p = 1 gives the

linear heat kernel diffusion [13].

In nonlinear diffusion, each node will apply the function д to its

current diffusion value before transmitting the heat to its neighbor.

If the values of u ∈ [0, 1], then if p > 1, the diffusion at each node

is reduced first according to both the parameter p and the diffusion

value at the node before the node can transmit any heat. This models

the diffusion medium capturing the value being diffused. Hence,

this will keep the diffusion more localized around the seed nodes.

However, if p < 1, then the diffusion at each node will be magnified

first before the node starts transmitting the value, which will help

the diffusion explore wider regions. This models settings where

large values diffuse faster.

Due to the effect of the nonlinearity, nonlinear diffusion does not

have a closed form solution as the heat kernel diffusion, thereforewe

approximate the solution of the dynamical system by using a simple

forward Euler integration, which can be derived by approximating

the time-derivative ∂u/∂t ≈ (u(t + h) − u(t ))/h.3 Hence, we have
the evolution:

u(t + h) = u(t ) − hLu(t )p .

Here u(t +h) is the diffusion value at time t +h. Because the notion
of “time” for this system is arbitrary, we only study the solution

after k steps of the evolution process with a fixed value of h. The
solution u for the dynamical systems is non-negative as mentioned

in [4] and [47]. However, as we approximate the dynamical system

using forward Euler method, the values can be negative. Getting

non-negative numerical solutions is difficult as discussed in [44]

and therefore, to ensure that u values are between 0 and 1, we

truncate values less than zero to be zero and values greater than

one to be one. Algorithm 1 gives a simple pseudocode to do this.

3
The forward Euler method is often problematic in dynamical systems in physics

because there are conservation laws that need to be respected in the approximation.

Because the diffusion framework here is an abstraction, we are less worried about

accuracy in terms of the ODE, which makes forward Euler a simple, pragmatic choice.

741



We have ongoing analysis to study accuracy and convergence in

the integration problem in more detail that are beyond the scope

of this paper; among these results, our analysis gives a direct proof

of non-negativity.

Algorithm 1: Nonlinear Diffusion with Growth or Decay

1 NonlinearDiffusionWithGrowthOrDecay (L,k,h,д, s)
Input :Random walk Laplacian L, number of steps k , step

length h, nonlinear function д and initial diffusion

values s.
Output : f

2 u = s ;
3 for i ← 0 to k do
4 u = u − hLд(u) ;
5 truncate values of u to be between 0 and 1

6 end
7 f = д(u);

2.3 Nonlinear Diffusion via Nonlinear Transfer
Like the heat kernel diffusion, we can also define nonlinear diffusion

using nonlinear transfer. Oneway to do this is via thep-Laplacian [1,
8, 9]. The p-Laplacian operator [8, 9] is defined as:

(∇p f )i =
∑
j ∈V

wi jϕp (f i − f j ),

where ϕp : R→ R is

ϕp (x ) = |x |
p−1

sign(x ),

and f = D−1u. This results in a nonlinear Laplacian operator as in

the following setting:

∂u
∂t
= ∇pu.

We can write the result of the p-Laplacian on a vector u using

the incidence matrix of the graph. Let N be the edges-by-nodes,

unweighted incidence matrix andW be a diagonal matrix of edge-

weights that corresponds to the order of edges in the incidence

matrix.
4
Then

ϕp (f i − f j ) = |ND−1u|p−1. ∗ sign(ND−1u)

∇p f = NTW |ND−1u|p−1. ∗ sign(ND−1u).

Here, we use the element-wise multiplication .∗, absolute value and

power. Additionally, we use the observation that ϕp (ND−1u) has
the same sign as ND−1u. Hence when we multiply by NTW the

arbitrary sign of the difference of edges in the incidence matrix

cancels and we scale by the appropriate weight because ofW . Note

that if p = 2, then the equation corresponds to the heat kernel

diffusion. Algorithm 2 shows the pseudocode for the nonlinear

diffusion using the p-Laplacian.

4
For the unweighted incidence matrix N and an unweighted graph, L = I −AD−1 =

N TN D−1
. For a weighted graph, we have L = N TW N D−1

. The matrices

N and W are easy to build from the raw list of edges. If ei, ej, ew are length

|E | = m arrays with the source, destination, and weight of each edge, then N =
sparse([1 : m; 1 : m], [ei; ej], [ones(m, 1);−ones(m, 1)], m, n) andW = diag(ew)
in pseudo-Matlab or Julia notation.

Algorithm 2: Nonlinear Diffusion using the p-Laplacian

1 NonlinearTransfer (N ,w,D,k,h,p, s)
Input :Unweighted incidence N , edge weights w, degree

matrix D, number of steps k , step length h, nonlinear
diffusion parameter p and initial diffusion values s.

Output : f
2 u = s ;
3 for i ← 0 to k do
4 q = ND−1u ;

5 u = u − hNT
[w. ∗ ( |q|)p−1. ∗ sign(q)] ;

6 truncate values of u to be between 0 and 1

7 end
8 f = D−1u;

3 USING NONLINEAR DIFFUSIONS
Given an input graphG , we can use the solution vector f that results
from either of the two nonlinear diffusions instead of any of the

vectors used in semi-supervised learning [19, 24, 35, 57] or local

community detection [13, 27, 55] as a straightforward substitution

in these algorithmic pipelines. All of these pipelines feature a diffuse-
and-round perspective where the results of multiple diffusions are

turned into estimated classes in the case of semi-supervised learning

or rounded to clusters in the case of community detection. We

elaborate more on community detection in Section 5.

To be more precise, for semi-supervised learning, we assume we

have S1, . . . , Sc as c-seed sets that represent samples of c classes.
The goal of the problem is to infer the class label 1, . . . , c for the
remaining nodes V − ∪Si . The most interesting case is when |Si | is
small and constant, such as 5 or 10 and independent of the graph

size. In which case, we diffuse from Si using our nonlinear diffusion
to compute a vector f i . With all the vectors f1, . . . , fc , we assign
classes based on their rank in the diffused solutions [19]. That is,

node j is the r1, . . . , rc th largest node in f1, . . . , fc , then we assign

its class to argmini ri . We can also pick the class based on the

largest value of node j in any of the diffusions [f i ]j , which we call

value-based rounding [57].

Complexity. The runtime complexity of our diffusions is linear

in the number of edges of the graph, because the major piece of

computation involves k-matrix vector products – multiplying by

a Laplacian or incidence matrix is linear in the number of edges –

for each of the c classes.
For the case of semi-supervised learning, our experiments and fi-

nal methodology incorporate two additional ideas. First, we can use

feedback from the diffusion process itself to suggest new training

labels [10] (Section 3.1). Second, we show how to easily incorpo-

rate multiple data representations into our diffusion framework

(Section 3.2).

3.1 Self-Training with Diffusion Methods
In semi-supervised learning, a self-trained diffusion means that

the diffusion method incorporates feedback from its results. For

instance, if the results of a diffusion f i suggest that a subset of node
R is extremely like to have label i , thenwewould re-run the diffusion
using seeds Si ∪ R. This process is repeated either for a specific
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number of iterations or until no significant change is observed

in the diffusion method. A confidence score for each label can be

calculated based on the diffusion values. The higher the diffusion

value, the more confident the diffusion is about its decision. As self-

training depends on the decision of the diffusion, if the diffusion

yields useful results, then the quality of the diffusion will enhance

over time, otherwise, the quality will decrease. Therefore, there is

no guarantee that self-training will always enhance the quality of

the diffusion, however, in practice it often does.

3.2 Integrating multiple data representations
In many real-world learning problems, the underlying data has

multiple representations. For example in citation graphs, there is a

matrix A ∈ Rn×n which captures the relationship between publica-

tions based on citations but there are also metadata associated with

each paper including authors, titles, and keywords. It is essential

to make use of all the available representations in order to develop

a better understanding of the data. Consequently, we show how

to use 2 different types of relationships between our objects to do

prediction. The extension to even more types is simple.

The idea is to construct multiple graphs based on each data

representation. For example in citation graphs, we would have A
the citation graph, and also B, which is a nearest neighbor graph

based on some similarity function over the metadata features. Then,

we want to run diffusions in A and B simultaneously and our goal

is to have all the diffusions concentrated in the same set of nodes. In

order to accomplish this goal, each diffusionwill try to pull the other

diffusions to be similar to it. This changes the nonlinear diffusion

differential equation (and similarly the heat kernel diffusion) to:
5

uAk+1
= uAk − hLAд(u

A
k ) − σ (u

A
k − u

B
k )

uBk+1
= uBk − hLBд(u

B
k ) − σ (u

B
k − u

A
k ).

Here uAk is the diffusion value for the diffusion running over A
at step k and we describe the update to get to the next step. The

impact of the parameter σ is the strength of the coupling between

the solutions. If σ is large, then we will move the solutions together.

If σ is small, then they will evolve with only weak coupling.

4 RELATEDWORK
Diffusion methods for clustering, semi-supervised learning, and

a variety of other problems have a lengthy history, which has

been extensively discussed in various surveys [10, 18, 34]. These

methods are all based on linear notions of diffusion. We highlight

two important connections we use in the remainder of the paper:

spectral clustering and personalized PageRank. For a useful broad

perspective on diffusion, we also recommend Ghosh et al. and Yan

et al. [17, 55].

Spectral clustering is based on looking for minimum energy

modes of the graph Laplacian. These minimum energy modes also

can be interpreted as bottlenecks in a diffusion over the nodes.

Since this is a linear matrix operator, these minimum energy modes

correspond to the small eigenvectors. Specifically, the Fiedler vector

is the second smallest generalized eigenvector LDf = λDf . This
eigenvector gives the smallest non-trivial minimizer of the energy

5
The equations for the p-Laplacian formulation are changed in an analogous fashion.

function E (f ) = fT LDf/(fTDf ). The Fiedler vector provably iden-

tifies a set of small conductance in the graph [15].

Personalized PageRank (PPR) is a diffusion method that mod-

els a random walk with reset process [37]. As a diffusion, it corre-

sponds to the infinite time limit of

dx
dt
= (1 − α ) (eS − x) − αLx,

following results on the dynamics of PageRank [21]. PageRank

can also be derived as a locally biased analogue of spectral cluster-

ing [19], and it is commonly used both for semi-supervised learn-

ing [57] and community detection [2], where it also identifies a set

of small conductance in the graph. We compare against PPR in our

experiments.

4.1 Nonlinear diffusions in graphs.
All of the existing work on nonlinear diffusion for graphs uses the

p-Laplacian [1] and seeks to generalize spectral clustering inspired

approaches. For instance, Buhler and Hein [9] seek to generalize the

Fiedler vector to the p-Laplacian by finding low-energy states. Like-

wise, Brindel and Zhu [8] seek low-energy states of the p-Laplacian
that fix the value of specific nodes to use for semi-supervised learn-

ing. Our perspective is different and we seek to generalize methods

based on their diffusion interpretations rather than the energy min-

imization perspectives. For linear diffusions, the two are essentially

equivalent because the eigenvectors determine the long-term be-

havior of the diffusion, but the generalizations are rather different

for nonlinear operations.

4.2 Relationship to Neural Networks
Our work can also be interpreted in the context of graph-based

neural networks [42]. These view a graph, or a matrix derived from

a graph, as defining a layer in a neural network. Hence, we can

interpret our diffusion as the output of a graph neural network with

a fixed set of weights and a variable number of layers (depending

on k). However, in addition to the graph structure, there are other

sources of information that are not utilized in these related work

like features per node. To use both the graph structure along with

the feature matrix, both Planetoid [56] and Graph Convolutional

Networks (GCN) [26] were proposed to allow neural networks to

jointly learn from the feature matrix along with the graph structure.

We compare against both of these methods in our experiments. (In

this work, we extend the diffusion methods to learn from different

sources of information.)

Compared to neural networks, nonlinear diffusion has two ad-

vantages, the first one is that it is more interpretable, as it follows a

dynamical equation. Having a dynamical equation makes it easier

to reason about its decisions and to develop theoretical results like

developing Cheeger-type inequalities. The second advantage is that

it reduces the number of parameters (we do no optimization over

the weights of the layers) used in neural networks and therefore it

is a simpler model.

4.3 Further relationships
Another line of work studies fractional Laplacians, which model

the diffusion dynamics with fractional powers of the Laplacian

matrix [40]. As such, these are still linear diffusions, albeit on a
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non-linear transformation of the Laplacian matrix. Our approach to

integrating the results of multiple representations bears some rela-

tionship with recent work on centrality in temporal networks [45],

although the motivation and applications are distinct. Finally, there

are methods that use flow techniques for semi-supervised learn-

ing [50, 52]. These techniques offer fundamentally different trade-

offs. In our view, they are often best used to refine the results of

diffusion algorithms to achieve better downstream performance.

5 NONLINEAR DIFFUSION ANALYSIS
The goal of this section is to prove our main theoretical result,

which guides how we would pick a nonlinear diffusion to find

small conductance sets in a graph. The precise method we study

is as follows. We use Algorithm 1 to diffuse from a seed set S to

produce a diffusion vector f . (Note that f depends on the seed set, the
value h, and the number of steps k .) Then we perform a sweep-cut

procedure over the vector f to identify a set of small conductance.

The sweep-cut procedure works by building a permutation σ =
(σ1,σ2, . . . ,σn ) that sorts f from large elements to small elements,

and then evaluates the conductance of each sorted prefix Si =
(σ1, . . . ,σi ). We return the set S = argmini ϕ (Si ) where ϕ (Si ) is
the conductance.

This proof of our main results proceeds in two stages. First, we

show a relationship between the sweep over any vector f and the

set of minimal conductance (Section 5.2) that shows how well an

“approximate indicator” vector behavior. Second, we will use the

properties of nonlinear diffusion to guide our choice for nonlinear

diffusion.

5.1 f-weighted Conductance
Before we begin, we fix a variety of notation that we will use

throughout the proof and introduce a specialized notion of conduc-

tance, that we term f -weighted conductance. Our objective is to

develop an inequality that relates the smallest conductance of any

set, ϕ∗, in the graphG to the conductance of performing sweepcut

over the vector f , which results in conductance ϕ (f ). Additionally,
we want this inequality to maintain a linear relationship between

ϕ∗ and ϕ (f ). This will require quantifying how well f looks like an
indicator vector over the optimal set.

Using f , we will direct each undirected edge e = (u,v ) in the

graph G, such that it points from the node with higher f value
to the node with lower f value. This re-direction will encode the

sorted order of the nodes and will ensure that f (u)− f (v ) ≥ 0 for all

(u,v ) ∈ E. To encode this re-direction using matrices, we will define

N f ∈ {0, 1,−1}m×n to be the f-oriented incidence matrix, where

for each edge e = (u,v ),N f (e,u) = 1 andN f (e,v ) = −1 if and only

if f (u) ≥ f (v ). We will use x ∼ y to iterate over the directed edges.

Additionally, assume that the vertices are numbered descending

according to f , so that we have f (v1) ≥ f (v2) ≥ ... ≥ f (vn ) and let

us first normalize f so that its values are between 0 and 1.

To accomplish our objective, we need to define a relationship

between the set S∗ of smallest conductance in the graph and the

set obtained by performing a sweepcut over f . Therefore, we define
the f-weighted conductance ϕ∗ (f ) as:

ϕ∗ (f ) =
|cutf (S

∗) |

minvolf (S
∗)
,

where |cutf (S
∗) | = (eT

S∗→S̄∗
+ eT

S̄∗→S∗
)N f f , eS→S̄ is the indicator

vector where only edges pointing from S to S̄ have value one and

other edges have value zero, andminvolf (S
∗) = min(

∑
u ∈S∗ f (u)d(u),

vol(G ) −
∑
u ∈S∗ f (u)d(u)). If f = eS∗ , then ϕ∗ (f ) = ϕ∗.

5.2 A General Sweepcut Inequality
To derive a general sweepcut inequality, we will derive an upper

bound and a lower bound for ϕ∗ (f ) and using these bounds, we will
be able to relate ϕ (f ) to ϕ∗ linearly. Additionally, let us defineW as

the set of nodes that have nonzero f values.

Lemma 5.1. If vol(W ) ≤ minvol(S∗), then:

ϕ∗ (f ) ≥
ϕ (f )volf (W ) − eTS∗→S∗N f f − eTS̄∗→S̄∗

N f f

minvolf (S∗)
,

Proof. The result is largely algebraic:

ϕ∗ (f ) =
|cutf (S

∗) |

minvolf (S
∗)

=
(eT
S∗→S̄∗

+ eT
S̄∗→S∗

)N f f

minvolf (S )

=
eTN f f − eTS∗→S∗N f f − eTS̄∗→S̄∗

N f f

minvolf (S
∗)

=

∑
x∼y (f (x ) − f (y)) − eTS∗→S∗N f f − eTS̄∗→S̄∗

N f f

minvolf (S )
.

Note that due to numbering of the vertices descending according

to f , (f (x ) − f (y)) is always a non negative number. Moreover, us-

ing

∑
x∼y (f (x ) − f (y)) =

∑n−1

i=1
(f (xi ) − f (xi+1)) |cut(Si ) | from [13],

where Si is the set of nodes labeled v1 to vi , we get:

ϕ∗ (f ) =

∑n−1

i=1
(f (xi ) − f (xi+1)) |cut(Si ) | − (eTS∗→S∗ + e

T
S̄∗→S̄∗

)N f f

minvolf (S
∗)

≥
ϕ (f )
∑n−1

i=1
(f (xi ) − f (xi+1)) minvol(Si ) − eTS∗→S∗N f f

minvolf (S
∗)

−
eT
S̄∗→S̄∗

N f f

minvolf (S
∗)
.

As vol(W ) ≤ minvol(S∗), we get:

ϕ∗ (f ) ≥
ϕ (f )
∑
x ∈W f (x )d(x ) − eTS∗→S∗N f f − eTS̄∗→S̄∗

N f f

minvolf (S
∗)

≥
ϕ (f )volf (W ) − eTS∗→S∗N f f − eTS̄∗→S̄∗

N f f

minvolf (S
∗)

.

□

Lemma 5.2. We also have

ϕ∗ (f ) ≤ ϕ∗
minvol(S∗)
minvolf (S∗)

.

Proof. By definition,

ϕ∗ (f ) =
|cutf (S

∗) |

minvolf (S
∗)
.
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Because f ∈ [0, 1], then the maximum value for f (i ) − f (j ) is 1 for

any edge (i, j ) and therefore we get:

ϕ∗ (f ) ≤
|cut(S∗) |

minvolf (S
∗)
= ϕ∗

minvol(S∗)

minvolf (S
∗)
.

□

Theorem 5.3. If we run a sweep-cut procedure on f where 0 ≤

fi ≤ 1 and vol(W ) ≤ minvol(S∗), then:

ϕ (f ) ≤ ϕ∗
minvol(S∗)
volfW

+
eTS∗→S∗N f f + eTS̄∗→S̄∗

N f f

volf (W )
.

Proof. By using the two previous lemmas and re-arranging the

terms, we can prove the theorem. □

Note that the previous generalized sweepcut inequality depends

on f ,W and S∗. If f is far from highlighting the set S∗ or vol(W ) is
small, then this bound will reduce to the trivial bound ϕ (f ) ≤ 1. In

the next section, we will use this generalized sweepcut inequality

in addition to nonlinear diffusion properties to show that if the

power function is used, then using small powers yields smaller

conductance sets.

5.3 Implications for Nonlinear Diffusion
Lemma 5.4. The sum property of nonlinear diffusion with growth

or decay is:

eT ut = eT u0 = 1.

Proof. By multiply both sides of the differential equation for

nonlinear diffusion with growth or decay by eT and using eT L = 0,

we get
∂u
∂t = 0. Therefore, the sum of the entries of u is always

one. □

We will set f = д(u) and start our proofs using the general

sweepcut inequality proposed in the previous section.

Lemma 5.5. If д satisfies д(u(x )) −д(u(y)) ≤ u(x ) − u(y) ∀x ,y ∈
W , then:

eTS∗→S∗N f f + e
T
S̄∗→S̄∗N f f ≤ |W |.

Proof. By noting that f is nonzero only at the setW , we get:

eTS∗→S∗N f f + e
T
S̄∗→S̄∗N f f ≤ eTW→W N f f .

If д satisfies д(u(x )) − д(u(y)) ≤ u(x ) − u(y) ∀x ,y ∈W , then:

eTS∗→S∗N f f + e
T
S̄∗→S̄∗N f f ≤ eTW→W N fu

≤
∑
x ∈W

u(x ) |N (x ) ∩W |.

Here N (x ) is the set of nodes that are neighbors to x in the graph.

eTS∗→S∗N f f + e
T
S̄∗→S̄∗N f f ≤

∑
x ∈W

u(x ) |W | = |W |.

□

Lemma 5.6.

volf (W ) ≥ mini ∈W f ivol(W ).

Proof.

volf (W ) = eTW Df ≥ mini ∈W f ieTW DeW = mini ∈W f ivol(W ).

□

Theorem 5.7. Sweepcut Inequality for Nonlinear Diffusion with
growth or decay:

If д satisfies д(u(x )) − д(u(y)) ≤ u(x ) − u(y) ∀x ,y ∈ W and
vol(W ) ≤ minvol(S∗) ≤ v , then:

ϕ (f ) ≤ ϕ∗
v

mini ∈W f ivol(W )
+

|W |

mini ∈W f ivol(W )
.

Proof. We can prove the theorem using the two previous lem-

mas. □

Theorem 5.8. If minvol(S∗) ≤ v , д(u) = up , p tends to zero,
davg (W ) ≥ α

ϕ∗ , and vol(W ) ≤ minvol(S∗), then the nonlinear diffu-
sion sweepcut inequality becomes:

ϕ (f ) ≤ (
v

vol(W )
+

1

α
)ϕ∗.

Proof. By noting that, as p tends to zero, u tends to an indicator

and therefore, the condition д(u(x ))−д(u(y)) ≤ u(x )−u(y)∀x ,y ∈
W is always satisfied. In this case, f will tend to be eW and the

following properties applies for eW . mini ∈W f ivol(W ) will tend to

vol(W ) and we can observe that:

|W |

mini ∈W f ivol(W )
=
|W |

vol(W )
=

|W |

|W |davg (W )
=

1

davg (W )
.

As davg (W ) ≥ α
ϕ∗ and re-arranging the terms, we can prove the

theorem. Note that we can control vol(W ) using k , the number of

steps, as increasing k increases vol(W ). □

At its heart, this theorem states that if the result of the diffusion

is close to an indicator vector, then we will have some relationship

between the set of smallest conductance and the result. This sug-

gests using the power function with small power as it will tend to

encourage “indicator-like” behavior for any number of time-steps.

If the graph has an average degree of Ω( 1

ϕ∗ ), then the nonlinear

diffusion conductance will be close to the smallest conductance

in the graph by a multiplicative factor and the larger the average

degree of the graph, the smaller the multiplicative factor. Addition-

ally, we can use this sweepcut inequality to tell us how close the

nonlinear diffusion conductance is to the smallest conductance in

the graph by simply computing the constants. On the other hand,

this theorem only provides coarse guidance and essentially requires

a large degree of knowledge of the optimal set to yield non-trivial

results.

6 EXPERIMENTS
The goal of our experiments is to show the advantage of our non-

linear diffusion process in a variety of settings. We first show

that it gives better F1-values in LFR synthetic graphs compared

with linear diffusions, where we get the best results with small

p as hinted at by our theory results. Second, in community de-

tection on SNAP graphs, the non-linear diffusion gives consis-

tently higher F1 scores on all graphs except one. Third, on graph-

based semi-supervised learning, we show that nonlinear diffu-

sion improves substantially on recently developed methods based
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on neural networks in two of three tests. Finally, we conclude

our experiments by trying to understand why nonlinear diffusion

gives better results. Thus, we conduct a case study in the Fash-

ion MNIST data and argue that the reason nonlinear diffusions

perform better is because they produce vectors with higher disper-

sion than linear diffusions. Our experimental code is available at:

https://github.com/RaniaSalama/Nonlinear_Diffusion

6.1 Synthetic Data
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Figure 2: The F1 measure and the conductance of various
techniques on LFR synthetic datasets. The bands show the
variation over 100 trials.

We use the LFR model [28] to generate the synthetic datasets

as it is a widely used model in evaluating community detection

algorithms. The parameters used for the model are n = 1000, av-

erage degree is 10, maximum degree is 50, minimum community

size is 20 and maximum community size is 100. LFR node degrees

and community sizes are distributed according to the power law

distribution, we set the exponent for the degree sequence to 2 and

the exponent for the community size distribution to 1. We vary µ
the mixing parameter from 0.02 to 0.5 with step 0.02 and run the

heat kernel diffusion (hk), personalized PageRank (ppr), nonlinear

diffusion using power function with p = 0.5, nonlinear diffusion

using tanh function and nonlinear diffusion using p-Laplacian. In
all the experiments, we set k = 100 and h = 0.001. For each graph,

we start from a random seed node and we repeat the experiment

100 times. Figure 2 shows the mean and the variance for the F1

measure and the conductance while varying µ. As shown in the

figure, nonlinear diffusion using power function with p = 0.5 has

a better F1 measure than the heat kernel diffusion and has lower

conductance than it for µ = 0.02 to 0.14. The conductance for the

nonlinear diffusion gets slightly higher after µ = 0.14 but the in-

crease in F1 measure is much higher. For example, for µ = 0.24, the

increase in conductance of p = 0.5 over the heat kernel diffusion is

≈ 9%, while the increase in F1 measure is ≈ 30%.

6.2 Local Community Detection
Local community detection is the task of finding the community

when given a member of that community. In this task, we start the

diffusion from the given node. Table 1 shows the community detec-

tion results for heat kernel diffusion (hk), personalized PageRank

(ppr), nonlinear diffusion using the power function as the nonlin-

ear function (power) with p = 0.5, nonlinear diffusion using the

tanh function (tanh) and nonlinear diffusion using the p-Laplacian
operator (p-Lap) with p = 1.9. In all nonlinear diffusions, we set

k = 10,h = 0.001. We have followed the same evaluation settings

as mentioned in [27]. In these experiments, we identify 100 commu-

nities from the ground truth such that each community has a size

greater than 10, then for all algorithms, we start from each node

in the community and finally report the result from the node that

yields the best F1 measure. For nonlinear diffusion we truncate the

diffusion values that are less than ε to be zero and the diffusion

values that are greater than one to be one, where ε is designed to

give 100 nodes in the final community, where we grow larger if

necessary.

Table 1 shows datasets from SNAP repository [30], their charac-

teristics, the mean F1 measure and the mean set size for the heat

kernel diffusion, the personalized PageRank and the nonlinear dif-

fusions. These results show that nonlinear diffusion can return a

larger set than the heat kernel diffusion with higher or comparable

F1 score. For example, in YouTube dataset, the detected communi-

ties for nonlinear diffusion have a higher F1 measure by around

35%.

6.3 Graph-based Semi-supervised Learning
Semi-supervised learning is the task of learning from a small set

of labeled examples and a very large set of unlabeled examples. In

these experiments, we use three citation networks, which are Cora,

Citeseer and Pubmed. Table 2 shows the characteristic of these

datasets. We run two coupled nonlinear diffusions as in Section 3.2,

one using the adjacency matrix and another one using an r nearest
neighbor graph constructed from the feature matrix using radial

basis function with width equal 1. Following the exact methodology

of [26], we choose the hyperparameters based on a train-validate-

test split where we pick the parameters based on the ones that

have the best classification accuracy on the validation set and then

show the evaluation on the test set. The parameters are the number

of nearest neighbors r , the number of steps k , the value of the

power function p1 for the adjacency diffusion and p2 for the nearest

neighbor diffusion, the value of σ , and value or rank rounding. For

reproducibility, the parameters we find are given in a footnote.
6

6
For all the experiments, we set h = 0.001. Let r be the number of nearest neighbors

used in the graph construction. For the power function, in Cora, we set the r = 100,

k = 400, σ = 0.55, p1 = 0.6, p2 = 0.45 and used value-based rounding; in Citeseer

we set r = 200, k = 400, σ = 0.51, p1 = 0.55, p2 = 0.55 and used rank-based

rounding; and in Pubmed we set r = 2000, k = 300, σ = 0.65, p1 = 0.7, p2 = 0.6
and used rank-based rounding. For nonlinear diffusion using tanh function, in Cora

we set r = 100, k = 450, σ = 1.9 and used value-based rounding; in Citeseer we set

r = 200, k = 450, σ = 1.9 and used rank-based rounding; and in Pubmed wet set

r = 2000, k = 400, σ = 1.8 and used rank-based rounding. Finally, for p-Laplacian,
for Cora, we set r = 100, p1 = 1.9, p2 = 1.7, σ = 0.05, k = 400; for Citeseer,
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Table 1: Community detection results.

|V| |E| F1 measure Set size

hk ppr power tanh p-Lap hk ppr power tanh p-Lap

DBLP 317,080 1,049,866 0.364 0.273 0.462 0.401 0.403 156 4,529 599.59 113.5 136.21

Amazon 334,863 925,872 0.608 0.415 0.559 0.505 0.476 145 5,073 479.76 34.70 74.20

YouTube 1,134,890 2,987,624 0.128 0.078 0.470 0.388 0.422 137 5,833 89.46 680.60 215.82

LiveJournal 3,997,962 34,681,189 0.138 0.104 0.251 0.258 0.269 156 299 104.29 773.35 717.49

Table 2: Characteristics of datasets used in graph-based
semi-supervised learning experiments.

|V| |E| |Classes| d Label rate

Citeseer 3,327 4,732 6 3,703 0.036

Cora 2,708 5,429 7 1,433 0.052

Pubmed 19,717 44,338 3 500 0.003

Table 3: Classification accuracy for graph-based semi-
supervised learning experiments.

Cora Citeseer Pubmed

ManiReg [3] 59.5 60.1 70.7

SemiEmb [53] 59.0 59.6 71.1

LP [58] 68.0 45.3 63.0

DeepWalk [39] 67.2 43.2 65.3

ICA [33] 75.1 69.1 73.9

Planetoid [56] 75.7 64.7 77.2

GCN [26] 81.5 70.3 79.0

GCN + self learning [31] 80.2 67.8 76.9

hk 61.4 53.8 63.3

power 74.2 70.6 70.0

power + self-learning 71.3 68.9 70.3

tanh 77.9 73.4 71.0

tanh + self-learning 82.9 72.2 73.0

p-Lap 79.8 68.7 73.4

p-Lap + self-learning 79.2 67.8 73.4

Table 3 shows the classification accuracy of nonlinear diffusion

compared to other graph-based semi-supervised learning related

work. As shown in the table nonlinear diffusion using tanh function

has the best classification accuracy in Cora and Citeseer. However,

GCN has the best classification accuracy in Pubmed. Note that,

we set r = 300, p1 = 1.8, p2 = 1.7, σ = 0.7, k = 1000; and for Pubmed, we set

r = 100, p1 = 1.9, p2 = 1.7, σ = 0.05, k = 400.

0.4 0.5 0.6 0.7
σ

40

60

80

Cl
as

sif
ica

tio
n 
Ac

cu
ra
cy

Cora
Citeseer
Pubmed

(a) Varying σ

0.4 0.5 0.6 0.7
p1

40

60

80

Cl
as

sif
ica

tio
n 
Ac

cu
ra
cy

(b) Varying p1

0.4 0.5 0.6 0.7
p2

40

60

80

Cl
as

sif
ica

tio
n 
Ac

cu
ra
cy

(c) Varying p2

1.7 1.8 1.9
σ

40

60

80

Cl
as

sif
ica

tio
n 
Ac

cu
ra
cy

(d) Varying σ in a tanh diffusion

Figure 3: As we vary parameters, the accuracy remains high
for many choices.

nonlinear diffusion uses less parameters as we do no optimization

over the weights of the layers and therefore it is the simplest model

with good accuracy. Additionally, the dynamics of the nonlinear

diffusion is described by a differential equation and therefore it is

easier to reason about and to develop bounds for its performance.

To further analyze the stability of nonlinear diffusion when

the parameters change, Figure 3 shows changing σ , p1 and p2 for

nonlinear diffusion using power function from 0.4 to 0.7 with step

of 0.02 and changing σ for nonlinear diffusion using tanh function

from 1.7 to 1.9 with step 0.02. As shown in the figure, nonlinear

diffusion is robust to small changes in the parameters.

6.4 Fashion MNIST Case Study
Our final experiment is a case study of the Fashion MNIST dataset

to understand why nonlinear diffusion outperforms linear diffusion.

The Fashion MNIST dataset is a collection of Zalando’s clothing

images [54] with 70,000, 28 by 28 grayscale images. Each example

is assigned a label from 10 classes, which are: T-shirt/top, Trouser,

Pullover, Dress, Coat, Sandal, Shirt, Sneaker, Bag and Ankle Boot.
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Figure 4: Comparison between the heat kernel diffusion and
the nonlinear diffusion on Fashion-MNIST dataset.

Table 4: Heat kernel diffusion and nonlinear diffusion error
rates on Fashion-MNIST dataset (k = 1000, h = 0.001, labels
per class = 10, and r = 100).

hk power

T-shirt/top 0.466 ± 0.211 0.362 ± 0.228
Trouser 0.180 ± 0.084 0.061 ± 0.017
Pullover 0.609 ± 0.140 0.582 ± 0.208
Dress 0.547 ± 0.171 0.481 ± 0.275
Coat 0.516 ± 0.199 0.502 ± 0.220
Sandal 0.546 ± 0.165 0.499 ± 0.256
Shirt 0.795 ± 0.109 0.820 ± 0.098

Sneaker 0.217 ± 0.116 0.196 ± 0.137
Bag 0.528 ± 0.118 0.403 ± 0.130
Ankle boot 0.325 ± 0.138 0.188 ± 0.190
Total 0.473 ± 0.030 0.409 ± 0.040
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Figure 5: Dispersion comparison between the heat kernel
diffusion values and nonlinear diffusion.

We construct a r -nearest neighbor graph from the data. Then, we

randomly select 10 examples per class to start the semi-supervised

learning task. Finally, we repeat the experiments 10 times and report

the error rate over the 70,000 examples. This means that we only

use around 0.14% of examples for the learning task.

Table 4 shows the error rates for the heat kernel diffusion and

the nonlinear diffusion using power function with p = 0.5 for each

different classes. These results show that nonlinear diffusion has a

lower error rate than the heat kernel diffusion in all class except

the Shirt class. Additionally, overall the error rate for the nonlinear

diffusion was lower by around 7%.

To further study the difference between the two techniques,

Figure 4 (a, b) compares values of the diffusion as in the introduction

(Figure 1). Specifically, these figures are run on a random sample of

1000 images where we start from a single T-shirt/top example in

the x-axis and the diffusion values when we start from a single coat

example in the y-axis. Then we show 2 randomly chosen pictures

from each class (so 20 pictures total). As shown in the figures, the

heat kernel diffusion is extremely spiky for the different examples,

while nonlinear diffusion is able to distinguish between different

examples to provide more information to downstream operators.

Figure 4 (c, d) shows the same comparison for Sandals and Bags.

We did one final evaluation to understand this advantage. Our

conjecture is that the nonlinear diffusion produces values with far

more dispersion over the range than the heat kernel. In Figure 5, we

draw the log of the standard deviation of the diffusion values when

we start the diffusion from each class for each trial. As shown in the

figure, the nonlinear diffusion values show much higher standard

deviations than the heat kernel diffusion, which supports this point.

7 DISCUSSION AND FUTUREWORK
In this paper, we have shown that nonlinear diffusion is competitive

with embedding techniques and significantly outperform classical

diffusions in community detection and semi-supervised learning.

As a simple diffusion model, there are ample opportunities to ac-

celerate the computation using a wide variety of techniques and

we have not made that a focus of our work. For instance, there

are Monte Carlo [14] and localized algorithms [2, 27] for linear

diffusions that yield sublinear complexity and millisecond-level

runtimes on billion edge graphs. In comparison, the complexity of

our current implementation is linear (the work is k matrix-vector

products). Note that, in our experience, the time required to evalu-

ate these diffusions is dominated by the initial data load, ingestion,

and r -nearest neighbor computation so we do not view this as

problematic, but for large numbers of classes, faster runtime may

be useful. We also note that our approach can easily be combined

with recent work on higher-order analysis of graphs based on mo-

tifs [5]. Specific things we will explore in the future include how

to choose the nonlinear function д in an automated fashion by

studying the properties of target sets in the graph. Additionally,

we hope to provide improved algorithms to evaluate the nonlinear

ODEs themselves.
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